2 声 三角比の拡張

1 三角比と座標

(教科書 p.128)

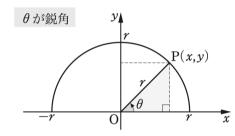
x 軸の正の部分を原点のまわりに θ だけ回転して得られる半直線を考え、この半直線と原点を中心とする半径 r の円との交点を P(x,y) とする。

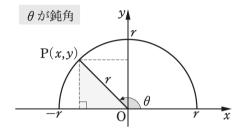
ただし、回転の向きは時計の針の回転と逆の向きとする。

このとき、角 θ に対する三角比を次のように定める。

$$\sin \theta = \frac{y}{r}$$
, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$

三角比の値は、角 θ だけで定まり、半径rの大きさによらない。





 θ が鈍角のときは x < 0, y > 0 であるから $\sin \theta > 0$, $\cos \theta < 0$, $\tan \theta < 0$

となる。

これらをまとめると、三角比の符号は、右の表のようになる。

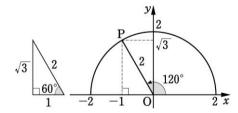
θ	鋭角	鈍角
$\sin \theta$	+	+
$\cos \theta$	+	_
$\tan \theta$	+	_

例 1 半径 2 の円において、 $\theta = 120^\circ$ とすると点 P の座標は下の図より $\left(-1, \sqrt{3}\right)$ であるから、 120° の三角比の値は次のようになる。

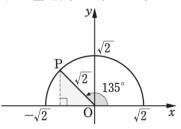
$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

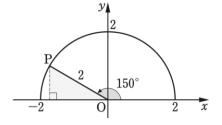
$$\cos 120^{\circ} = \frac{-1}{2} = -\frac{1}{2}$$

$$\cos 120^\circ = \frac{1}{2} = -\frac{1}{2}$$
$$\tan 120^\circ = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$



---第1 次の図を用いて,135°,150°の三角比の値を求めよ。





・半径 $\sqrt{2}$ の円において、 $\theta = 135^{\circ}$ とすると、

P(-1, 1) であるから

$$\sin 135^{\circ} = \frac{1}{\sqrt{2}}$$

$$\cos 135^\circ = -\frac{1}{\sqrt{2}}$$

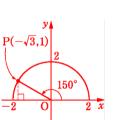
・半径2の円において、 $\theta = 150^{\circ}$ とすると、

$$P(-\sqrt{3}, 1)$$
 であるから

$$\sin 150^\circ = \frac{1}{2}$$

$$\cos 150^\circ = -\frac{\sqrt{3}}{2}$$

$$\tan 150^{\circ} = -\frac{1}{\sqrt{3}}$$



単位円の周上の点の座標

(教科書 p.130)

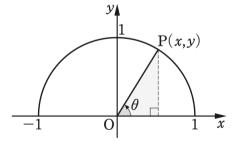
原点を中心とする半径 1 の円を(1 単位円)という。単位円で考えると,角 θ を表す半径を 0 P,点 P の座標を (x,y) とするとき,三角比の定義から

$$\sin \theta = y$$
, $\cos \theta = x$, $\tan \theta = \frac{y}{x}$

である。

したがって、 $0^{\circ} \le \theta \le 180^{\circ}$ のとき $-1 \le \cos \theta \le 1$, $0 \le \sin \theta \le 1$

が成り立つ。



0°,90°,180°の三角比

単位円において、半径 OP が表す角が 0°, 90°, 180° のとき, 点 P の 座標はそれぞれ

$$(1, 0), (0, 1), (-1, 0)$$

となる。よって、0°、90°、180°の三角比の値は、次のようになる。

$$\sin 0^{\circ} = 0$$
.

$$\sin 0^{\circ} = 0$$
, $\cos 0^{\circ} = 1$,

$$\tan 0^{\circ} = 0$$

$$\sin 90^{\circ} = 1,$$

$$\cos 90^{\circ} = 0$$
,

$$\sin 90^{\circ} = 1$$
, $\cos 90^{\circ} = 0$, $\tan 90^{\circ}$ は定義されない

$$in 180^{\circ} = 0$$
,

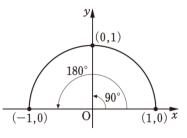
$$\sin 180^{\circ} = 0$$
, $\cos 180^{\circ} = -1$, $\tan 180^{\circ} = 0$

$$\tan 180^{\circ} = 0$$

いろいろな角の三角比の値を表にまとめると、次のようになる。

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

(教科書 p.130)



正弦・余弦の値から角を求めること

(教科書 p.131)

次の等式を満たす角 θ を求めよ。ただし, $0^{\circ} \le \theta \le 180^{\circ}$ とする。

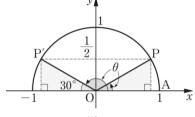
$$(1) \quad \sin \theta = \frac{1}{2}$$

(2)
$$\cos \theta = -\frac{1}{\sqrt{2}}$$

(1) 単位円の周上で,y座標が $\frac{1}{2}$ となる点は,右の図の2点 P, P'である。

求める角 θ は $\angle AOP$, $\angle AOP'$ であるから

$$\theta = 30^{\circ}, 150^{\circ}$$

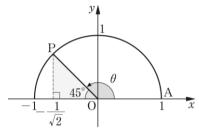


(2) 単位円の周上で、x座標が $-\frac{1}{\sqrt{2}}$ となる点は、右の図の

点 P である。

求める角 θ は ∠AOP であるから

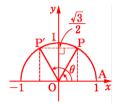
 $\theta = 135^{\circ}$



数学 I advance 4章「図形と計量」

問2 次の等式を満たす角 θ を求めよ。ただし, $0^{\circ} \le \theta \le 180^{\circ}$ とする。

$$(1) \quad \sin \theta = \frac{\sqrt{3}}{2}$$

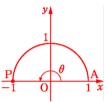


単位円の周上で、y座標が $\frac{\sqrt{3}}{2}$ となる点は、図の 2 点 P、P' である。

求める角 θ は、 $\angle AOP$ 、 $\angle AOP'$ であるから

$$\theta = 60^{\circ}$$
, 120°

(2)
$$\cos \theta = -1$$



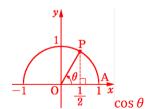
単位円の周上で、x座標が-1となる点は、図の点Pである。

求める角 θ は、

∠AOP であるから

$$\theta = 180^{\circ}$$

問3 $0^{\circ} \le \theta \le 180^{\circ}$ のとき、 $2\cos\theta - 1 = 0$ を満たす角 θ を求めよ。 $2\cos\theta - 1 = 0$ より $\cos\theta = \frac{1}{2}$



単位円の周上で、x座標が $\frac{1}{2}$ となる点は、図の点 Pである。

求める角 θ は、 $\angle AOP$ であるから

$$\theta = 60^{\circ}$$

正接の値がとり得る範囲

(教科書 p.132)

正接の値がとり得る範囲について、単位円と直線 x = 1 を利用して考えてみよう。

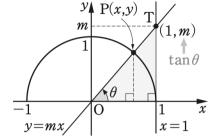
実数mが与えられたとき、直線x = 1上に点T(1, m)をとる。

直線 OT と単位円の交点を P(x, y) とし、半径 OP が表す角を θ

とすると

$$\tan\theta = \frac{y}{x} = \frac{m}{1} = m$$

したがって、 $0^{\circ} \le \theta < 90^{\circ}$ 、 $90^{\circ} < \theta \le 180^{\circ}$ のとき、



 $(1 an \theta はすべての実数値)をとる。$

例題 次の等式を満たす角 θ を求めよ。ただし, $0^{\circ} \le \theta \le 180^{\circ}$ とする。

2
$$\tan \theta = -\sqrt{3}$$

| **首線** x = 1 上に

点
$$T(1, -\sqrt{3})$$

をとる。

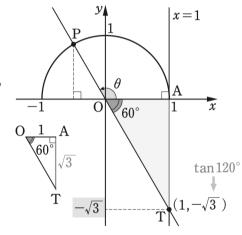
 $0^{\circ} \le \theta \le 180^{\circ}$ であるから、直線 OT と単位円の交点 P を右の図のようにとると

$$\theta = \angle AOP$$

である。

∠TOA = 60° であるから

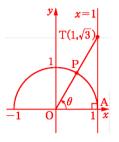
$$\theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$$



数学 I advance 4章「図形と計量」

問4 次の等式を満たす角 θ を求めよ。ただし, $0^{\circ} \le \theta \le 180^{\circ}$ とする。

(1)
$$\tan \theta = \sqrt{3}$$



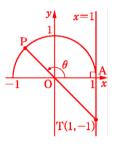
直線 x = 1 上に点 $T(1, \sqrt{3})$ をとる。

 $0^{\circ} \le \theta \le 180^{\circ}$ であるから、直線 OT と単位円の交点 P を図のようにとると $\theta = \angle AOP$

である。

よって $\theta = 60^{\circ}$

(2) $\tan \theta = -1$



直線 x = 1 上に点 T(1, −1) をとる。

 $0^{\circ} \le \theta \le 180^{\circ}$ であるから、直線 OT と単位円の交点 P を図のようにとると $\theta = \angle AOP$

である。

よって *θ* = 135°

直線の傾きと正弦

(教科書 p.133)

例 2 $\tan 45^\circ = 1$ であるから、x 軸の正の向きとなす角が 45° である直線の傾きは (1) である。

問5 x 軸の正の向きとなす角が 135° である直線の傾きを求めよ。 $\tan 135^{\circ} = -1$ であるから、直線の傾きは -1

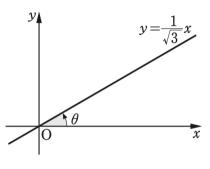
例 3

直線 $y = \frac{1}{\sqrt{3}}x$ が x 軸の正の向きとなす角 θ を求めてみよう。

$$\tan \theta = \frac{1}{\sqrt{3}}$$

であるから

 $\theta = 30^{\circ}$



問6 次の直線がx軸の正の向きとなす角を求めよ。

$$(1) \quad y = -\sqrt{3}x$$

直線 $y = -\sqrt{3}x$ が x 軸の正の向きとなす角を θ とすると

$$\tan \theta = -\sqrt{3}$$

であるから $\theta = 120^{\circ}$

(2) y = x + 2

直線 y = x + 2 が x 軸の正の向きとなす角を θ とすると

$$\tan \theta = 1$$

であるから $\theta = 45^{\circ}$

2 三角比の性質

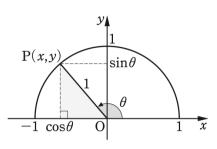
三角比の相互関係

単位円で三角比を考えると

$$x = \cos \theta$$
, $y = \sin \theta$

であるから

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$



(教科書 p.134)

また, 三平方の定理により, $x^2 + y^2 = 1$ であるから $\cos^2 \theta + \sin^2 \theta = 1$

すなわち, 角 θ の範囲が $0^{\circ} \le \theta \le 180^{\circ}$ のときも次の公式が成り立つ。

三角比の相互関係(1)

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

例題

 $\sin \theta = \frac{3}{5}$ のとき、 $\cos \theta$ 、 $\tan \theta$ の値を求めよ。

ただし, 0° ≦ θ ≦ 180° とする。

 $\Re \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$

(i) θ が鋭角のとき, $\cos \theta > 0$ であるから

$$\cos \theta = \sqrt{\frac{16}{25}} = \frac{4}{5}$$
, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{5} \div \frac{4}{5} = \frac{3}{4}$

(ii) θ が鈍角のとき、 $\cos \theta < 0$ であるから

$$\cos \theta = -\sqrt{\frac{16}{25}} = -\frac{4}{5}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{5} \div \left(-\frac{4}{5}\right) = -\frac{3}{4}$$

〈答〉 $\cos\theta = \frac{4}{5}$, $\tan\theta = \frac{3}{4}$ または $\cos\theta = -\frac{4}{5}$, $\tan\theta = -\frac{3}{4}$

問7 $0^{\circ} \le \theta \le 180^{\circ}$ のとき,次の値を求めよ。

(1) $\sin \theta = \frac{5}{13}$ のとき、 $\cos \theta$ 、 $\tan \theta$ の値 $\cos^2 \theta = 1 - \sin^2 \theta$

$$=1-\left(\frac{5}{13}\right)^2=\frac{144}{169}$$

(i) θ が鋭角のとき、 $\cos \theta > 0$ であるから

$$\cos \theta = \sqrt{\frac{144}{169}} = \frac{12}{13}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{13} \div \frac{12}{13} = \frac{5}{12}$$

(ii) θ が鈍角のとき、 $\cos \theta < 0$ であるから

$$\cos\theta = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{13} \div \left(-\frac{12}{13}\right) = -\frac{5}{12}$$

(i), (ii)より

$$\cos \theta = \frac{12}{13}$$
, $\tan \theta = \frac{5}{12}$

または

$$\cos\theta = -\frac{12}{13}, \quad \tan\theta = -\frac{5}{12}$$

(2) $\cos \theta = -\frac{1}{4}$ のとき、 $\sin \theta$ 、 $\tan \theta$ の値 $\sin^2 \theta = 1 - \cos^2 \theta$

$$=1-\left(-\frac{1}{4}\right)^2=\frac{15}{16}$$

 $0^{\circ} \le \theta \le 180^{\circ}$ より、 $\sin \theta > 0$ であるから

$$\sin\theta = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{15}}{4} \div \left(-\frac{1}{4}\right) = -\sqrt{15}$$

等式 $\sin^2\theta + \cos^2\theta = 1$ の両辺を $\cos^2\theta$ で割ると

$$\frac{\sin^2\theta}{\cos^2\theta} + 1 = \frac{1}{\cos^2\theta}$$

ここで、 $\frac{\sin\theta}{\cos\theta} = \tan\theta$ であるから、 $0^{\circ} \le \theta \le 180^{\circ}$ のときも次の公式が成り立つ。

三角比の相互関係(2)

$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$

例題 $\tan \theta = -2$ のとき、 $\sin \theta$ 、 $\cos \theta$ の値を求めよ。

4 ただし, 0° ≤ θ ≤ 180° とする。

$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta = 1 + (-2)^2 = 5$$
 より $\cos^2 \theta = \frac{1}{5}$ $\tan \theta < 0$ より, θ は鈍角であるから $\cos \theta < 0$

また $\sin \theta = \tan \theta \cos \theta$

$$= (-2) \cdot \left(-\frac{\sqrt{5}}{5}\right) = \frac{2\sqrt{5}}{5} \quad \cdots$$

間8 $\tan\theta = -\frac{1}{3}$ のとき、 $\sin\theta$ 、 $\cos\theta$ の値を求めよ。ただし、 $0^{\circ} \le \theta \le 180^{\circ}$ とする。 $\frac{1}{\cos^2\theta} = 1 + \tan^2\theta$

$$=1+\left(-\frac{1}{3}\right)^2=\frac{10}{9}$$

よって
$$\cos^2\theta = \frac{9}{10}$$

 $\tan \theta < 0$ より、 θ は鈍角であるから $\cos \theta < 0$

よって
$$\cos \theta = -\sqrt{\frac{9}{10}} = -\frac{3\sqrt{10}}{10}$$

 $\sin \theta = \tan \theta \cos \theta$

$$= \left(-\frac{1}{3}\right) \cdot \left(-\frac{3\sqrt{10}}{10}\right) = \frac{\sqrt{10}}{10}$$

180° — θ の三角比

(教科書 p.136)

右の図のように、点 P(x, y) と点 P'(-x, y) は y 軸に関して対称であるから、 \angle AOP = θ とおくと \angle AOP' = 180° - θ

である。

よって

$$\sin(180^{\circ} - \theta) = v = \sin\theta$$

$$cos(180^{\circ} - \theta) = -x = -cos\theta$$

$$\tan(180^{\circ} - \theta) = \frac{y}{-x} = -\frac{y}{x} = -\tan\theta$$

したがって、次の公式が成り立つ。

180° – θ の三角比

$$\sin(180^{\circ} - \theta) = \sin \theta$$

$$\cos(180^{\circ} - \theta) = -\cos\theta$$

$$\tan(180^{\circ} - \theta) = -\tan\theta$$

この公式により、鈍角の三角比は鋭角の三角比になおして、その値を求めることができる。

例 4 三角比の表を用いて、次の値を求めてみよう。

$$\sin 154^\circ = \sin(180^\circ - 26^\circ) = \sin 26^\circ = 0.4384$$

 $\cos 154^\circ = \cos(180^\circ - 26^\circ) = -\cos 26^\circ = -0.8988$
 $\tan 154^\circ = \tan(180^\circ - 26^\circ) = -\tan 26^\circ = -0.4877$

- 問9 三角比の表を用いて、次の値を求めよ。
 - (1) sin 140°

$$\sin 140^\circ = \sin(180^\circ - 40^\circ)$$

= $\sin 40^\circ = 0.6428$

(2) cos 118°

$$\cos 118^{\circ} = \cos(180^{\circ} - 62^{\circ})$$
$$= -\cos 62^{\circ} = -0.4695$$

(3) tan 163°

$$\tan 163^\circ = \tan(180^\circ - 17^\circ)$$

= $-\tan 17^\circ = -0.3057$

問題

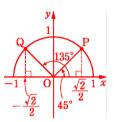
(教科書 p.137)

5 $0^{\circ} \le \theta \le 180^{\circ}$ のとき、 $2\cos^2\theta - 1 = 0$ を満たす角 θ を求めよ。

$$2\cos^2\theta - 1 = 0 \ \ \ \, \downarrow \ \, \emptyset$$

$$cos^2 \theta = \frac{1}{2} + txhb$$
 $cos \theta = \pm \frac{\sqrt{2}}{2}$

単位円の周上で、x座標が $\frac{\sqrt{2}}{2}$ となる点は右の図のP,



 $-\frac{\sqrt{2}}{2}$ となる点は右の図の **Q** である。

よって

$$\theta = 45^{\circ}$$
 または $\theta = 135^{\circ}$

- **6** $\sin 36^\circ = 0.588$, $\cos 36^\circ = 0.809$, $\tan 36^\circ = 0.727$ を用いて、次の三角比の値を求めよ。
 - (1) sin 144°

$$\sin 144^{\circ} = \sin(180^{\circ} - 36^{\circ})$$

= $\sin 36^{\circ} = 0.588$

(2) $\cos 144^{\circ}$

$$\cos 144^{\circ} = \cos(180^{\circ} - 36^{\circ})$$
$$= -\cos 36^{\circ} = -0.809$$

(3) tan 144°

$$\tan 144^{\circ} = \tan(180^{\circ} - 36^{\circ})$$

= $-\tan 36^{\circ} = -0.727$

(4) sin 126°

$$\sin 126^{\circ} = \sin(180^{\circ} - 54^{\circ}) = \sin 54^{\circ}$$

= $\sin(90^{\circ} - 36^{\circ}) = \cos 36^{\circ}$
= 0.809

 $(5) \cos 126^{\circ}$

$$\cos 126^{\circ} = \cos(180^{\circ} - 54^{\circ}) = -\cos 54^{\circ}$$
$$= -\cos(90^{\circ} - 36^{\circ}) = -\sin 36^{\circ}$$
$$= -0.588$$

- **7** $0^{\circ} \le \theta \le 180^{\circ}$ のとき、次の値を求めよ。
 - (1) $\sin\theta = \frac{3}{4}$ のとき, $\cos\theta$, $\tan\theta$ の値 $\cos^2\theta = 1 \sin^2\theta$

$$=1-\left(\frac{3}{4}\right)^2=\frac{7}{16}$$

(i) θ が鋭角のとき, $\cos \theta > 0$ であるから

$$\cos \theta = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{4} \div \frac{\sqrt{7}}{4} = \frac{3}{\sqrt{7}} = \frac{3\sqrt{7}}{7}$$

(ii) θ が鈍角のとき, $\cos \theta < 0$ であるから

$$\cos\theta = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{4} \div \left(-\frac{\sqrt{7}}{4} \right) = -\frac{3}{\sqrt{7}}$$

$$=-\frac{3\sqrt{7}}{7}$$

(i), (ii)より

$$\cos \theta = \frac{\sqrt{7}}{4}$$
, $\tan \theta = \frac{3\sqrt{7}}{7}$

または

$$\cos \theta = -\frac{\sqrt{7}}{4}$$
, $\tan \theta = -\frac{3\sqrt{7}}{7}$

数学 I advance 4章「図形と計量」

(2)
$$\tan \theta = -\frac{2}{\sqrt{5}}$$
 のとき、 $\sin \theta$ 、 $\cos \theta$ の値
$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta$$

$$= 1 + \left(-\frac{2}{\sqrt{5}}\right)^2 = \frac{9}{5}$$

$$=1+\left(-\frac{2}{\sqrt{5}}\right) =$$

よって

$$\cos^2\theta = \frac{5}{9}$$

 $\tan \theta < 0$ より θ が鈍角であるから

 $\cos \theta < 0$

よって

$$\cos\theta = -\sqrt{\frac{5}{9}} = -\frac{\sqrt{5}}{3}$$

 $\sin \theta = \tan \theta \cos \theta$

$$= -\frac{2}{\sqrt{5}} \cdot \left(-\frac{\sqrt{5}}{3}\right) = \frac{2}{3}$$

8 等式

$$1 + \frac{1}{\tan^2 \theta} = \frac{1}{\sin^2 \theta}$$

が成り立つことを証明せよ。

 $\sin^2\theta + \cos^2\theta = 1$ の両辺を $\sin^2\theta$ で割って

$$1 + \frac{\cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \downarrow \emptyset \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\tan^2 \theta}$$

よって

$$1 + \frac{1}{\tan^2 \theta} = \frac{1}{\sin^2 \theta}$$

〔別証〕

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 より $\frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta}$ であるから

$$1 + \frac{1}{\tan^2 \theta} = 1 + \frac{\cos^2 \theta}{\sin^2 \theta}$$
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}$$

$$\begin{array}{ccc}
 & -\sin^2\theta \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

9 $0^{\circ} \le \theta \le 90^{\circ}$ とするとき、次の三角比を θ の三角比を用いて表せ。

- (1) $\sin(90^{\circ} + \theta)$
- (2) $\cos(90^{\circ} + \theta)$

図のように、点 P(x, y) に対して、点 P'(-y, x) をとる。

$$\angle AOP' = 90^{\circ} + \theta$$

となる。

(1) $\sin(90^{\circ} + \theta)$

$$= x = \cos\theta$$

(2)
$$\cos(90^{\circ} + \theta)$$

$$= -y = -\sin\theta$$

10 2直線

$$y = \sqrt{3}x$$

$$y = -x$$

のなす角 θ を求めよ。

ただし、 $0^{\circ} \le \theta \le 90^{\circ}$ とする。

2 直線 $y = \sqrt{3}x$, y = -x がそれぞれ x 軸の正の向きとなす角を θ_1 , θ_2 とする。ただし、 $0^{\circ} \le \theta_1 < 180^{\circ}$ 、 $0^{\circ} \le \theta_2 < 180^{\circ}$ とする。

$$\tan \theta_1 = \sqrt{3} \qquad \cdots$$

$$\tan \theta_2 = -1$$
 ·····

- ①より $\theta_1 = 60^{\circ}$
- ②より $\theta_2 = 135^{\circ}$

よって
$$\theta = \theta_2 - \theta_1 = 135^{\circ} - 60^{\circ} = 75^{\circ}$$

