1 軍面上のベクトル

1 ベクトルの意味

有向線分とベクトル

平面上で、点 A から点 B までの移動は、右の図のように、線分 AB に向きを示す矢印をつけて表すことができる。このような向きのつ いた線分を(^①)という。

線分 AB の長さを有向線分 AB の(2)または長さ $^{\Lambda}_{h,h}$

という。

また、有向線分 AB において、A を (3)、B を (4) という。

有向線分について、その位置を問題にせず、向きと大きさだけに着目したものを

(^⑤) という。

有向線分 AB の表すベクトルを**、**([©]) と書く。

表す。

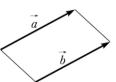
そして,有向線分 AB の長さをベクトル \overrightarrow{AB} の($^{\circ}$) といい,($^{\otimes}$) で

ベクトルの相等

(教科書 p.51)

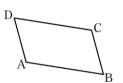
(教科書 p.50)

2 つのベクトル \vec{a} , \vec{b} の向きと大きさが一致するとき、これらのベク トルは ($^{\circ}$) といい、 $\vec{a} = \vec{b}$ と表す。



間1 右の平行四辺形で、次のベクトルのうち互いに 等しいものを答えよ。

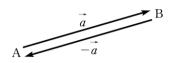
- (1) \overrightarrow{AD} (2) \overrightarrow{BA}
- \overrightarrow{BC} \overrightarrow{A} \overrightarrow{CD}



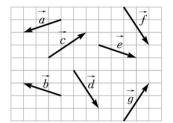
逆ベクトルと零ベクトル

(教科書 p.51)

ベクトル \vec{a} と大きさが同じで、向きが反対のベクトルを \vec{a} の) といい。 (^⑪)で表す。



問2 右の図の中で、等しいベクトルを答えよ。 また、互いに逆ベクトルであるものを答えよ。



始点と終点の一致したベクトル AA は大きさが 0 のベクトルと考えられる。このベクトルを)といい**、**([®])で表す。

2 ベクトルの加法・減法・実数倍

ベクトルの加法

ベクトル \vec{a} , \vec{b} に対して,1 つの点 A をとり

$$\vec{a} = \overrightarrow{AB}$$
. $\vec{b} = \overrightarrow{BC}$

となるように点 B, C をとる。このとき,

$$\overrightarrow{AC}$$
 $\overrightarrow{E}\overrightarrow{a}$ $\overrightarrow{C}\overrightarrow{b}$ O (4)

) といい

)

と表す。すなわち

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

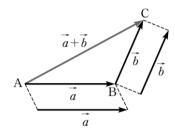
間3 右の図において、次のベクトルを図示せよ。

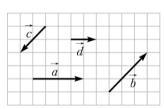
(1)
$$\vec{a} + \vec{b}$$

(3) $\vec{a} + \vec{d}$

 $(4) \quad \vec{b} + \vec{c}$

(教科書 p.52)





ベクトルの加法については、次のことが成り立つ。

ベクトルの加法

 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

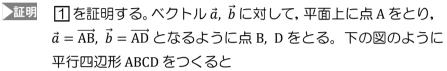
交換法則

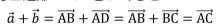
2

 $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ 結合法則

 $\vec{a} + \vec{0} = \vec{a}$

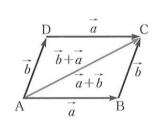
 $\vec{a} + (-\vec{a}) = \vec{0}$



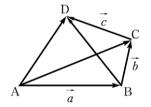


$$\vec{b} + \vec{a} = \overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$

であるから、 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ が成り立つ。



間4 右の図を用いて、上の法則②が成り立つことを確かめよ。



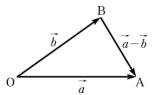
間5 平面上に 3 点 A, B, C がある。このとき、 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ が成り立つことを示せ。

数学 B Advanced 2章「ベクトル」

ベクトルの減法

(教科書 p.53)

ベクトル \vec{a} , \vec{b} に対して、1 つの点 0 をとり、 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ となる 2 点 A,B をとると \overrightarrow{OB} + \overrightarrow{BA} = \overrightarrow{OA} である。このとき,ベクトル \overrightarrow{BA} を \vec{a} と \vec{b} の([®])といい

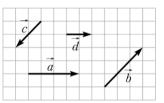


と表す。すなわち

(¹⁷)

(18)

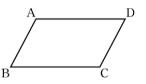
- **間6** 右の図において、次のベクトルを図示せよ。
 - $(1) \quad \vec{a} \vec{b}$



(2) $\vec{c} - \vec{a}$

(3) $\vec{a} - \vec{d}$

- <u>問7</u> 右の図の平行四辺形において、次のベクトルの差を求めよ。
 - $(1) \quad \overrightarrow{AD} \overrightarrow{AB}$



- (2) $\overrightarrow{AD} \overrightarrow{CD}$
- (3) $\overrightarrow{AD} \overrightarrow{DC}$