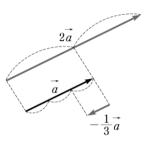
ベクトルの実数倍

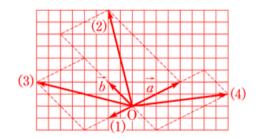
(教科書 p.54)

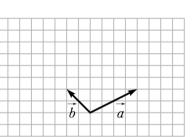
ベクトル \vec{a} と実数 \vec{k} に対して、 \vec{a} の \vec{k} 倍(\vec{a}) を次のように定義する。

- (i) $\vec{a} \neq \vec{0}$ のとき, $k\vec{a}$ は
 - k > 0 ならば、 \vec{a} と同じ向きで、大きさが k 倍のベクトル
 - k < 0ならば、 \vec{a} と反対の向きで、大きさが $\lfloor k \rfloor$ 倍のベクトル
 - k=0 ならば、 $\vec{0}$ すなわち $0\vec{a}=\vec{0}$
- (ii) $\vec{a} = \vec{0}$ のとき、任意の実数 k に対して $k\vec{0} = \vec{0}$
- 例 **1** ベクトル *ā* に対して, 2*ā* は *ā* と同じ向きで大きさが 2 倍のベクトルである。
 - $-\frac{1}{3}$ \vec{a} は \vec{a} と反対の向きで大きさが $\frac{1}{3}$ 倍のベクトルである。



- 問8 右の図のように \vec{a} , \vec{b} が与えられたとき, 次のベクトルを図示せよ。
 - $(1) -\frac{1}{2}\vec{a}$
- $(2) \quad \vec{a} + 3\vec{b}$
- $(3) \quad -\vec{a}+2\vec{b}$
- $(4) \quad \frac{3}{2}\vec{a} \vec{b}$

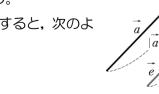




注意 $\frac{1}{k}\vec{a}$ を $\frac{\vec{a}}{k}$ と書くことがある。

大きさが1のベクトルを(***) 単位ベクトル)という。

一般に, $\vec{a} \neq \vec{0}$ のとき, \vec{a} と同じ向きの単位ベクトルを \vec{e} とすると, 次のようになる。



 $(\hat{v}) \qquad \vec{e} = \frac{\vec{a}}{|\vec{a}|} \qquad)$

| $|\vec{a}| = 3$ のとき、 \vec{a} と同じ向きの単位ベクトルを求めよ。

ā と同じ向きの単位ベクトルを ē とすると

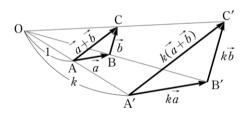
$$\vec{e} = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{3}\vec{a}$$

実数 k, l に対して、次の法則が成り立つ。

ベクトルの実数倍

- $\boxed{2} \qquad (k+l)\vec{a} = k\vec{a} + l\vec{a}$
- $\mathbf{3} \qquad \mathbf{k}(\vec{a} + \vec{b}) = \mathbf{k}\vec{a} + \mathbf{k}\vec{b}$

<u>周10</u> 次の図を用いて、上の3が成り立つことを確かめよ。



 $\overrightarrow{A'B'} = k\overrightarrow{AB}$, $\overrightarrow{B'C'} = k\overrightarrow{BC}$, $\overrightarrow{A'C'} = k\overrightarrow{AC}$ であるから

$$k(\vec{a} + \vec{b}) = k\vec{A}\vec{C} = \vec{A'}\vec{C'}$$
$$= \vec{A'}\vec{B'} + \vec{B'}\vec{C'}$$
$$= k\vec{A}\vec{B} + k\vec{B}\vec{C}$$
$$= k\vec{a} + k\vec{b}$$

例
$$2(\vec{a} - 4\vec{b}) + 3(2\vec{a} + 3\vec{b}) = 2\vec{a} - 8\vec{b} + 6\vec{a} + 9\vec{b}$$

= $(2+6)\vec{a} + (-8+9)\vec{b} = 8\vec{a} + \vec{b}$

次を計算せよ。

(1)
$$3\vec{a} + 4\vec{a} - 2\vec{a}$$

= $(3 + 4 - 2)\vec{a} = 5\vec{a}$

(2)
$$3(\vec{a} + 2\vec{b}) - 5(2\vec{a} - \vec{b})$$

= $3\vec{a} + 6\vec{b} - 10\vec{a} + 5\vec{b}$
= $(3 - 10)\vec{a} + (6 + 5)\vec{b}$
= $-7\vec{a} + 11\vec{b}$

<u>問12</u> 次の式を満たす \vec{x} を \vec{a} , \vec{b} で表せ。

(1)
$$\vec{x} - 3\vec{b} = -2\vec{x} + 9\vec{a}$$
$$\vec{x} - 3\vec{b} = -2\vec{x} + 9\vec{a}$$
$$\vec{x} + 2\vec{x} = 9\vec{a} + 3\vec{b}$$
$$(1 + 2)\vec{x} = 9\vec{a} + 3\vec{b}$$
$$3\vec{x} = 9\vec{a} + 3\vec{b}$$
$$\vec{x} = 3\vec{a} + \vec{b}$$

(2)
$$3(\vec{x} - 2\vec{a}) - 2(\vec{x} - 4\vec{b}) = 2\vec{a} - 4\vec{b} - 3\vec{x}$$
$$3(\vec{x} - 2\vec{a}) - 2(\vec{x} - 4\vec{b}) = 2\vec{a} - 4\vec{b} - 3\vec{x}$$
$$3\vec{x} - 6\vec{a} - 2\vec{x} + 8\vec{b} = 2\vec{a} - 4\vec{b} - 3\vec{x}$$
$$(3 - 2 + 3)\vec{x} = (2 + 6)\vec{a} + (-4 - 8)\vec{b}$$
$$4\vec{x} = 8\vec{a} - 12\vec{b}$$
$$\vec{x} = 2\vec{a} - 3\vec{b}$$

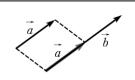
ベクトルの平行

 $\vec{0}$ でない 2 つのベクトル \vec{a} , \vec{b} が,同じ向きまたは反対向きであるとき, \vec{a} と \vec{b} は(22 平行) であるといい,(23 \vec{a} // \vec{b}) と書く。

ベクトルの平行の定義と実数倍の定義から、次のことがわかる。

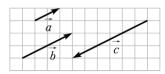
ベクトルの平行条件

$$\vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0}$$
 のとき
$$\vec{a} \ /\!\!/ \ \vec{b} \iff \vec{b} = k\vec{a} \ \texttt{となる}$$



<u>間13</u> 右の図で、 \vec{b} 、 \vec{c} を \vec{a} で表せ。また、 \vec{a} 、 \vec{b} を \vec{c} で表せ。

$$\vec{b} = 2\vec{a}, \ \vec{c} = -3\vec{a}, \ \vec{a} = -\frac{1}{3}\vec{c}, \ \vec{b} = -\frac{2}{3}\vec{c}$$

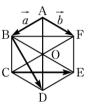


ベクトルの分解

(教科書 p.56)

例題 右の図の正六角形 ABCDEF において、 $\overrightarrow{AB} = \vec{a}$ 、 $\overrightarrow{AF} = \vec{b}$ とするとき、次

- **1** のベクトルを \vec{a} , \vec{b} で表せ。
 - (1) \overrightarrow{CE}
- (2) \overrightarrow{BD}



ightharpoonup (1) $\overrightarrow{CE} = \overrightarrow{BF}$ であるから $\overrightarrow{CE} = \overrightarrow{b} - \overrightarrow{a}$

(2) 正六角形の中心を 0 とすると
$$\overrightarrow{BD} = \overrightarrow{BE} + \overrightarrow{ED} = 2\overrightarrow{BO} + \overrightarrow{ED} = 2\overrightarrow{AF} + \overrightarrow{AB}$$
 ゆえに $\overrightarrow{BD} = \vec{a} + 2\vec{b}$

問14 例題 1 で、 \overrightarrow{AE} , \overrightarrow{CB} , \overrightarrow{DF} をそれぞれ \overrightarrow{a} , \overrightarrow{b} で表せ。

$$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AB} + 2\overrightarrow{BO}$$

= $\overrightarrow{AB} + 2\overrightarrow{AF} = \overrightarrow{a} + 2\overrightarrow{b}$

$$\overrightarrow{\mathbf{CB}} = \overrightarrow{\mathbf{OA}} = -\overrightarrow{\mathbf{AO}} = -(\overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{AF}})$$
$$= -(\vec{a} + \vec{b}) = -\vec{a} - \vec{b}$$

$$\overrightarrow{\mathbf{DF}} = \overrightarrow{\mathbf{CA}} = \overrightarrow{\mathbf{CB}} + \overrightarrow{\mathbf{BA}} = \overrightarrow{\mathbf{CB}} - \overrightarrow{\mathbf{AB}}$$
$$= (-\vec{a} - \vec{b}) - \vec{a} = -2\vec{a} - \vec{b}$$

一般に、平面上の 2 つのベクトル \vec{a} , \vec{b} について、次のことが成り立つ。

分解の一意性

 $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ かつ $\vec{a} \succeq \vec{b}$ が平行でないとき、平面上の任意のベクトル \vec{p} は、 $\vec{p} = k\vec{a} + l\vec{b}$ の形にただ 1 通りに表される。ただし、k, l は実数である。

 $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$ かつ $\vec{a} \subset \vec{b}$ が平行でないとき、次のことが成り立つ。

注意 $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$ かつ \vec{a} と \vec{b} が平行でないとき, \vec{a} と \vec{b} は (® 1 次独立) であるという

(教科書 p 56)