3 ベクトルの成分

座標とベクトル

0 を原点とする座標平面上で、x 軸および y 軸の正の向きと同じ向き の単位ベクトルを、(^② 基本ベクトル)といい、それぞれ $(^{28}$ $\overrightarrow{e_1}$, $\overrightarrow{e_2}$)で表す。

いま、与えられたベクトル \vec{a} に対して、 $\vec{a} = \overrightarrow{OA}$ となる点 A をとり、 その座標を (a_1, a_2) とすると、 \vec{a} は

$$\vec{a} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2}$$

と表される。

これをaの(20 基本ベクトル表示)という。この a_1 , a_2 をそれぞれaの x成分, y成分)といい, \vec{a} を

$$(^{\mathfrak{F}} \qquad \vec{a} = (a_1, a_2) \qquad)$$

と表す。この表し方を、 \vec{a} の($^{(2)}$ 成分表示)という。

ベクトルの表示

$$\vec{a} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2}$$

基本ベクトル表示

$$\vec{a} = (a_1, a_2)$$

成分表示

また, 2 つのベクトル $\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$ に対して

$$(^{\textcircled{3}} \qquad \overrightarrow{a} = \overrightarrow{b} \iff a_1 = b_1, \ a_2 = b_2 \qquad)$$

 \vec{a} の大きさ $|\vec{a}|$ は、線分 0A の長さであるから、成分表示されたベクトルの大きさは、次のように なる。

ベクトルの大きさ

$$\vec{a} = (a_1, a_2)$$
 のとき $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

例 3 基本ベクトル表示が $\vec{a} = 4\vec{e_1} - 3\vec{e_2}$ であるベクトル \vec{a} において

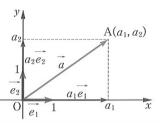
a の成分表示は

 $\vec{a} = (4, -3)$

ぱ の大きさは

 $|\vec{a}| = \sqrt{4^2 + (-3)^2} = 5$

(教科書 p.58)



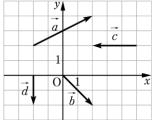
 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ は 1 次独立であるから, この表し方はただ1通りである。 問15 右の図のベクトル \vec{a} , \vec{b} , \vec{c} , \vec{d} を成分表示し、その大きさを求 めよ。

$$\vec{a} = (4, 2), |\vec{a}| = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$$

$$\vec{b} = (2, -2), |\vec{b}| = \sqrt{2^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$$

$$\vec{c} = (-3, 0), |\vec{c}| = \sqrt{(-3)^2 + 0^2} = \sqrt{9} = 3$$

$$\vec{d} = (0, -2), |\vec{d}| = \sqrt{0^2 + (-2)^2} = \sqrt{4} = 2$$



成分による演算

(教科書 p.59)

和,差,実数倍の演算を成分を用いて表すと、次のようになる。

成分による演算

$$\boxed{1} \qquad (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) - (b_1, b_2) = (a_1 - b_1, a_2 - b_2)$$

$$\exists k(a_1, a_2) = (ka_1, ka_2)$$

k は実数

例
$$\vec{a} = (5, 2), \vec{b} = (3, 4)$$
 のとき

$$\vec{a} + \vec{b} = (5 + 3.2 + 4) = (8.6)$$

$$3\vec{a} - 2\vec{b} = 3(5,2) - 2(3,4) = (15,6) - (6,8) = (9,-2)$$

間16 $\vec{a} = (2, -3), \vec{b} = (-1, 2)$ のとき、次のベクトルを成分表示せよ。

$$(1) \quad \vec{a} + \vec{b}$$

$$=(2, -3)+(-1, 2)$$

$$=(2-1, -3+2)$$

$$= \begin{pmatrix} \mathbf{1}, & -\mathbf{1} \end{pmatrix}$$

(2)
$$2\vec{a} - 5\vec{b}$$

$$=2(2, -3)-5(-1, 2)$$

$$= (4, -6) - (-5, 10)$$

$$=(4+5, -6-10)$$

$$= (9, -16)$$

(3)
$$3(2\vec{a} - 6\vec{b}) - 5(\vec{a} - 4\vec{b})$$

 $= 6\vec{a} - 18\vec{b} - 5\vec{a} + 20\vec{b}$
 $= \vec{a} + 2\vec{b}$
 $= (2 - 3) + 2(-1, 2)$
 $= (2 - 3) + (-2, 4)$
 $= (2 - 2, -3 + 4)$
 $= (0, 1)$

問17
$$\vec{a} = (3, 0), \vec{b} = (4, -5)$$
 のとき、 $\vec{a} - 3\vec{x} = 2(\vec{x} + \vec{b})$ を満たす \vec{x} の成分表示を求めよ。
$$\vec{a} - 3\vec{x} = 2(\vec{x} + \vec{b})$$

$$\vec{a} - 3\vec{x} = 2\vec{x} + 2\vec{b}$$

$$-5\vec{x} = -\vec{a} + 2\vec{b}$$

$$\vec{x} = \frac{1}{5}(\vec{a} - 2\vec{b})$$

$$= \frac{1}{5}\{(3, 0) - 2(4, -5)\}$$

$$= \frac{1}{5}\{(3, 0) - (8, -10)\}$$

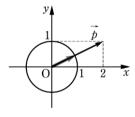
$$= \frac{1}{5}(-5, 10) = (-1, 2)$$

例 \vec{p} = (2, 1) のとき, \vec{p} と同じ向きの単位ベクトルの成分表示を求めてみよう。

$$|\vec{p}| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

であるから、求める単位ベクトルは

$$\frac{\vec{p}}{|\vec{p}|} = \frac{1}{\sqrt{5}}\vec{p} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

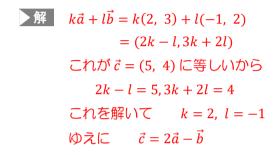


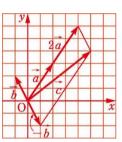
問18 $\vec{a} = (12, -5)$ と同じ向きの単位ベクトルを成分表示せよ。

$$|\vec{a}| = \sqrt{12^2 + (-5)^2} = 13$$
よって、求める単位ベクトルは

$$\frac{\vec{a}}{|\vec{a}|} = \frac{1}{13}\vec{a} = \left(\frac{12}{13}, -\frac{5}{13}\right)$$

例題 $\vec{a}=(2,3),\ \vec{b}=(-1,2)$ のとき、 $\vec{c}=(5,4)$ を $k\vec{a}+l\vec{b}$ の形で表せ。





問19 $\vec{a} = (1, 2)$, $\vec{b} = (1, -1)$ のとき、次のベクトルを $k\vec{a} + l\vec{b}$ の形で表せ。 (1) $\vec{c} = (5, 1)$

$$k\vec{a} + l\vec{b} = k(1, 2) + l(1, -1)$$

$$= (k + l, 2k - l)$$

これが
$$\vec{c} = (5, 1)$$
に等しいから

$$k + l = 5$$
, $2k - l = 1$

これを解いて
$$k=2$$
, $l=3$

ゆえに
$$\vec{c} = 2\vec{a} + 3\vec{b}$$

(2)
$$\vec{d} = (0, -3)$$

(1)と同様に

$$k\vec{a} + l\vec{b} = (k + l, 2k - l)$$

これが
$$\vec{d}=(0, -3)$$
に等しいから

$$k + l = 0$$
, $2k - l = -3$

これを解いて
$$k=-1$$
, $l=1$

ゆえに
$$\vec{d} = -\vec{a} + \vec{b}$$

(教科書 p.61)

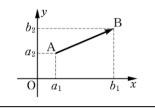
一般に、2 点 A, B に対して、ベクトル \overrightarrow{AB} の成分表示と大きさは次のようになる。

座標と成分表示

$$A(a_1, a_2)$$
, $B(b_1, b_2)$ のとき

$$\boxed{1} \quad \overrightarrow{AB} = (b_1 - a_1, b_2 - a_2)$$

$$\boxed{2} \quad |\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$



問20 3点 A(-2, 6), B(3, -1), C(3, -4) について, 次のベクトルを成分表示し, その大きさを求めよ。

$$(1)$$
 \overrightarrow{AB}

$$\overrightarrow{AB} = (3 - (-2), -1 - 6)$$

= $(5, -7)$
 $|\overrightarrow{AB}| = \sqrt{5^2 + (-7)^2} = \sqrt{74}$

$$(2)$$
 \overrightarrow{BC}

$$\overrightarrow{BC} = (3-3, -4-(-1))$$

$$= (0, -3)$$

$$|\overrightarrow{BC}| = \sqrt{0^2 + (-3)^2} = \sqrt{9} = 3$$

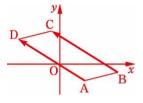
(3) CA

$$\overrightarrow{CA} = \begin{pmatrix} -2 - 3, & 6 - (-4) \end{pmatrix}$$
$$= \begin{pmatrix} -5, & \mathbf{10} \end{pmatrix}$$
$$|\overrightarrow{CA}| = \sqrt{(-5)^2 + 10^2} = \sqrt{125} = \mathbf{5}\sqrt{\mathbf{5}}$$

 夕
 平面上に3点A(3, -2), B(7, -1), C(-1, 4) がある。四角形 ABCD が平行四辺形となるよう

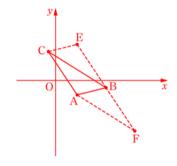
 3
 な点Dの座標を求めよ。

ための条件は
$$\overrightarrow{AD} = \overrightarrow{BC}$$
 であるから $(x-3, y-(-2)) = (-1-7, 4-(-1))$ よって $x-3=-8, y+2=5$ したがって $x=-5, y=3$ ゆえに $D(-5, 3)$



問21 例題3の3点A,B,Cを頂点にもつ平行四辺形は3つある。他の2つの平行四辺形の残りの頂点の座標を求めよ。

次の図のような2点E, Fを考える。



 $E(x_1, y_1)$, $F(x_2, y_2)$ とすると、四角形ABEC、AFBC は平行四辺形になる。 平行四辺形 ABEC において、 $\overrightarrow{AB} = \overrightarrow{CE}$ であるから

$$(7-3, -1-(-2)) = (x_1-(-1), y_1-4)$$

よって
$$x_1 + 1 = 4$$
, $y_1 - 4 = 1$

したがって
$$x_1 = 3$$
, $y_1 = 5$

ゆえに E(3, 5)

平行四辺形 AFBC において、 $\overrightarrow{AF} = \overrightarrow{CB}$ であるから

$$(x_2-3, y_2-(-2))=(7-(-1), -1-4)$$

よって
$$x_2 - 3 = 8$$
, $y_2 + 2 = -5$

したがって
$$x_2 = 11$$
, $y_2 = -7$

ゆえに F(11, −7)

数学 B Advanced 2章「ベクトル」

ベクトルの平行

(教科書 p 62)

 $\vec{0}$ でない 2 つのベクトル $\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$ について、次のことが成り立つ。

ベクトルの平行条件

 $\vec{a} \neq \vec{0}$. $\vec{b} \neq \vec{0}$ のとき

 $\vec{a} /\!\!/ \vec{b} \iff (b_1, b_2) = k(a_1, a_2)$ となる実数 k がある

同22 $\vec{a} = (1, -2), \vec{b} = (-3, y)$ が平行になるような y の値を求めよ。

 \vec{a} / \vec{b} であるから、k を実数として

$$\vec{b} = k\vec{a}$$

よって
$$(-3, y) = k(1, -2)$$

$$=(k, -2k)$$

したがって -3 = k, v = -2k

k = -3 であるから y = 6

例 $\vec{a} = (4, 3)$ と平行で、大きさが 4 であるベクトル \vec{b} を求めてみよう。

k を実数として $\vec{b} = k\vec{a} = k(4, 3) = (4k, 3k) \cdots 1$

となり, $|\vec{b}| = \sqrt{(4k)^2 + (3k)^2} = 4$ を満たす。

これより、 $25k^2 = 16$ であるから $k = \pm \frac{4}{5}$

よって、①より求めるベクトルは $\left(\frac{16}{5}, \frac{12}{5}\right), \left(-\frac{16}{5}, -\frac{12}{5}\right)$

間23 $\vec{a} = (-2, 2)$ と平行で、大きさが3であるベクトルを求めよ。

求めるベクトルを \vec{b} とすると、kを実数として

$$\vec{b} = k\vec{a} = k(-2, 2) = (-2k, 2k)$$

となり、 $|\vec{b}| = \sqrt{(-2k)^2 + (2k)^2} = 3$ を満たす。

これより、 $8k^2 = 9$ であるから $k = \pm \frac{3\sqrt{2}}{4}$

よって、①より求めるベクトルは

$$\left(-\frac{3\sqrt{2}}{2}, \quad \frac{3\sqrt{2}}{2}\right), \quad \left(\frac{3\sqrt{2}}{2}, \quad -\frac{3\sqrt{2}}{2}\right)$$

 $\vec{a} = (3, -2), \vec{b} = (1, -4), \vec{c} = (-1, 2)$ のとき, $\vec{a} + t\vec{b}$ が \vec{c} と平行になるような実数 t の値を 求めよ。

 \bigcirc 解 $(\vec{a} + t\vec{b}) /\!\!/ \vec{c}$ であるから、k を実数として $\vec{a} + t\vec{b} = k\vec{c}$ と表される。

よって
$$(3, -2) + t(1, -4) = k(-1, 2)$$

 $(3 + t, -2 - 4t) = (-k, 2k)$

したがって
$$3+t=-k$$
, $-2-4t=2k$

ゆえに t = 2

問24 $\vec{a} = (6, -1), \vec{b} = (-3, 2), \vec{c} = (1, -1)$ のとき、 $\vec{a} + t\vec{b}$ が \vec{c} と平行になるような実数 t の値を求 めよ。

 $(\vec{a} + t\vec{b}) / \vec{c}$ であるから、kを実数として

$$\vec{a} + t\vec{b} = k\vec{c}$$

と表される。

よって
$$(6, -1) + t(-3, 2) = k(1, -1)$$

$$(6-3t, -1+2t) = (k, -k)$$

したがって
$$6-3t=k$$
, $-1+2t=-k$

ゆえに t=5